CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

$$AB$$ is a variable line sliding between the coordinate axes in such a way that $$A$$ lies on x-axis and $$B$$ lies on y-axis. If $$P$$ is a variable point on $$AB$$ such that $$PA = b, PB = a$$ and $$AB = a + b$$, find the equation of the locus of $$P$$.


Solution

$$A(l,0),B(0,h)$$
$$\therefore$$ By section formula
$$P(x,y)=(\cfrac { al }{ a+b } ,\cfrac { bh }{ a+b } )\\ \therefore x=\cfrac { al }{ a+b } ,\quad y=\cfrac { bh }{ a+b } \\ AB=\sqrt { { l }^{ 2 }+{ h }^{ 2 } } =(a+b)\quad \quad \Rightarrow { l }^{ 2 }+{ h }^{ 2 }={ (a+b) }^{ 2 }\\ \therefore \cfrac { { x }^{ 2 } }{ { a }^{ 2 } } +\cfrac { { y }^{ 2 } }{ { b }^{ 2 } } =\cfrac { { l }^{ 2 }+{ h }^{ 2 } }{ { (a+b) }^{ 2 } } $$
$$ \therefore \cfrac { { x }^{ 2 } }{ { a }^{ 2 } } +\cfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1$$   -required locus .

1090553_1153592_ans_756a9a7dbee242b19d8b144a4a492ee2.png

Mathematics

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image