AB is the chord of contact of tangents drawn from a point (6,8) to the circle x2+y2=r2. If the area of the triangle PAB be maximum, then radius r of the circle is ?
A
5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
5√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
10
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
8
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A5 Let ∠APB=2θ,CP=√36+64=10 ∴r=10sinθ and AP=10cosθ PM=CP−CM=10−rsinθ A=Area of ΔAPB=2ΔAPM A=2.12AM.PM=rcosθ(10−rsinθ) Now put r=10sinθ A=100[sinθcosθ(1−sin2θ)]=100[sinθcos3θ] ...(1) Now A will be maximum when z=sinθsin3θ is max. ∴dzdθ=cos4θ−3sin2θcos2θ=0 or cos2(cos2θ−3sin2θ)=0 ∴cosθ=0 or tan2θ=13∴θ=90∘ or θ=30∘ At θ=30∘ d2zdθ2=−2cosθsinθ(cos2θ−3sin2θ)+cos2θ[−2cosθsinθ−6sinθcosθ] =0−8sinθcos3θ=−ive for θ=30∘ ∴ z is max. at θ=300 and hence, area A is maximum. ∴ Hence, r=10sinθ=10sin30∘=5