ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If ∠DBC=70∘, ∠BAC=30∘ and AB=BC, find ∠ECD.
50∘
For chord CD,
∠CBD=∠CAD [Angles in the same segment]
⇒∠CAD=70∘
∠BAD=∠BAC+∠CAD=30∘+70∘=100∘
∠BCD+∠BAD=180∘ [Opposite angles of a cyclic quadrilateral]
∠BCD+100∘=180∘
∠BCD=80∘
In ΔABC,
AB=BC [Given]
⇒∠BCA=∠CAB [Angles opposite to equal sides of a triangle]
∴∠BCA=30∘
We have, ∠BCD=80∘
∠BCA+∠ACD=80∘
30∘+∠ACD=80∘
⇒∠ACD=50∘
∴∠ECD=50∘