The correct option is C 52
−−→AB=→a,−−→AD=→b,−−→AC=2→a+3→b
−−→BD=−−→AD−−−→AB=→b−→a
Area of quadrilateral =12|−−→BD×−−→AC|=12|(→b−→a)×(2→a+3→b)|
⇒12|2(→b×→a)−3(→a×→b)|=52|→a×→b|⋯(i)
Area of parallelogram =|−−→AB×−−→AD|=|→a×→b|⋯(ii)
From (i) and (ii)
Area of quadrilateral = 52 (Area of parallelogram)
Hence p=52