CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

Add vectors $$\vec{A},\vec{B}$$ and $$\vec{C}$$ each having magnitude of $$100$$ unit and inclined to the X-axis at angles $$45^{\circ}$$, $$135^{\circ}$$ and $$315^{\circ}$$ respectively.


Solution

$$y$$ component of $$\vec{a}= 100\sin{{45}^{\circ}} =\dfrac{100}{\sqrt{2}}$$

$$y$$ component of $$\vec{b}= 100\sin{{135}^{\circ}} =\dfrac{100}{\sqrt{2}}$$

$$y$$ component of $$\vec{c}= 100\sin{{315}^{\circ}} =\dfrac{-100}{\sqrt{2}}$$

Resultant of $$y$$ component$$=\dfrac{100}{\sqrt{2}}+\dfrac{100}{\sqrt{2}}-\dfrac{100}{\sqrt{2}}=\dfrac{100}{\sqrt{2}}$$units

$$x$$ component of $$\vec{a}= 100\cos{{45}^{\circ}} =\dfrac{100}{\sqrt{2}}$$

$$x$$ component of $$\vec{b}= 100\cos{{45}^{\circ}} =\dfrac{-100}{\sqrt{2}}$$

$$x$$ component of $$\vec{c}= 100\cos{{45}^{\circ}} =\dfrac{100}{\sqrt{2}}$$

Resultant of $$x$$ component$$=\dfrac{100}{\sqrt{2}}-\dfrac{100}{\sqrt{2}}+\dfrac{100}{\sqrt{2}}=\dfrac{100}{\sqrt{2}}$$units

Total resultant of $$x$$ and $$y$$ component$$={\left(\dfrac{100}{\sqrt{2}}\right)}^{2}+{\left(\dfrac{100}{\sqrt{2}}\right)}^{2}=100$$

Now, $$\tan{D}=y-$$component $$/x-$$ component$$=1$$

$$D={\tan}^{-1}{\left(1\right)}={45}^{\circ}$$

So, the resultant is $$100$$ unit and $${45}^{\circ}$$ with $$x-$$axis

1260936_1133032_ans_14efa7e743d04f32a4cfeb04d2bbebfb.png

Physics

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image