CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

An element 'X' (At. mass $$=40$$g $$mol^{-1}$$) having f.c.c structure, has unit cell edge length of $$400$$ pm. Calculate the density of 'X' and the number of unit cells in $$4$$g of 'X'. $$(N_A=6.022\times 10^{23}mol^{-1})$$.


Solution

$$ \text { edge length } =  \text { 400 pm} =  \text { 400  }\times 10^{-10}  \text { cm}= \text { 4  }\times 10^{-8}  \text { cm}$$
$$ \text { Density } = \dfrac { \text { Atomic mass} \times  \text { Number of atoms in 1 unit cell }    }{ \text { Avogadro's number} \times ( \text { edge length}  )^3  }  $$
$$ \text { Density } = \dfrac {40g mol^{-1} \times  \text { 4 }    }{  6.022\times 10^{23}mol^{-1} \times ( \text { 4  }\times 10^{-8}  \text { cm}  )^3  }  $$
 
$$ \text { Density } =\text {4.15 g/cm}^3  $$
Volume of 4 g of 'X' $$=\dfrac { \text { 4 g }}{\text {4.15 g/cm}^3}=\text {0.964 cm}^3$$
Volume of one unit cell $$=( \text { edge length}  )^3= ( \text { 4  }\times 10^{-8}  \text { cm}  )^3=6.4 \times 10^{-23}\text { cm}^3$$
The number of unit cells in 4g of 'X' $$= \dfrac {\text {0.964 cm}^3}{6.4 \times 10^{-23}\text { cm}^3}=1.5 \times 10^{22}$$

Chemistry

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image