  Question

Column 1 Column 2 Column 3(I)In a triangle ABC sin A, sin B, sin C(i)Latus rectum of ellipse(P)2 are in A.P., then sin(A2)sin(A2)sin(C2)is x216+y24=1 is equal to (II)In ΔABC if 2Δ+b2+c2=2bc+a2,(ii)Eccentricity of hyperbola(Q)3 then value of x which satisfy x2−5(sin (x−√2)22−y216=1  A+cos A)x+25 sin A cos A=0 is equal to is equal to (III)In ΔABC if a=7, b=3,c=√1312(iii)Radius of director circle ofR7and median AD meets circumcircle at x236+y213=1 is equal to   E, then AE is greater than   (IV)The point of contact of an inscribed circle of a right angled(iv)Minimum value of |z1−z2| where(S)4 triangle divides the hypotenuse in two |z1|=2 and |z2−9|=3 is equal to  parts of lengths 4 and 7, then area of triangle is divisible by (where complex numbers in argand plane)   Which of the following is the only correct combination?

A

(I), (i), (P)  B

(I), (i), (Q)  C

(I), (ii), (P)  D

(I), (ii), (R)  Solution

The correct option is D (I), (i), (P) (I) sin(B2)sin(A2)sin(C2)= ⎷(s−a)(s−c)ac(s−b)(s−c)bc(s−a)(s−b)ab=bs−b=2ba+c−b=2 (II) bc sin A=2bc−(b2+c2−a2)sin A=1bc[2bc−2bc cos A] = 2(1- cos A) =4 sin2A2⇒ cotA2=2sin A=2.121+14=45, cos A=35 x = 5 sin A, 5 cos A or x = 3, 4 (III) AD=12√2(1312+9)−49=12√100=5 AD.DE = BD.DC ⇒DE=72×725=4920[AE]=[5+4920]=7 (IV) ∑tanA2tanB2=1⇒r7.r4+r7.1+r4.1=1⇒r2+11r=28Δ=r(11+r)=28 Co-Curriculars

Suggest Corrections  0  Similar questions
View More 