CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

By using the properties of definite integrals, evaluate the integral π0log(1+cosx)dx

Open in App
Solution

Let I=π0log(1+cosx)dx ........... (1)
I=π0log(1+cos(πx))dx,(a0f(x)dx=a0f(ax)dx)
I=π0log(1cosx)dx ........... (2)
Adding (1) and (2), we obtain
2I=π0{log(1+cosx)+log(1cosx)}dx
2I=π0log(1cos2x)dx
2I=π0logsin2xdx
2I=2π0logsinxdx
I=π0logsinxdx ........ (3)
sin(πx)=sinx
I=2π20logsinxdx ............ (4)
I=2π20logsin(π2x)dx=2π20logcosxdx .............. (5)
Adding (4) and (5), we obtain
2I=2π20(logsinx+logcosx)dx
I=π20(logsinx+logcosx+log2log2)dx
I=π20(log2sinxcosxlog2)dx
I=π20logsin2xdxπ20log2dx
Let 2x=t2dx=dt
When x=0,t=0 and when x=π2
I=12π20logsintdtπ2log2
I=12Iπ2log2
I2=π2log2
=πlog2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon