wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

calculate 11log(2x2+x)

Open in App
Solution

I=11log(2x2+x)
=11log(2x)dx11log(2+x)dx [logmn=logmlogn]
=I1I2
Let I1=log(2x)dx
Using integration by parts where u=log(2x),v=1
I1=log(2x)1dx{ddx{log(2x)}1dx}dx.
=xlog(2x)12xxdx
=xlog(2x)2x22xdx
=xlog(2x)2x2xdx+22xdx
=xlog(2x)x+2log(2x)1
=xlog(2x)x2log(2x)
I1=11log(2x)dx=[xlog(2x)x2log(2x)]11
=1log(21)12log(21)(1)log(2+1)+(1)+2log(2+1)
=log112log1+log(3)1+2log3
=2+3log3 [since log1=0]
=3log32.
Similarly,
Let I2=log(2+x)dx
=log(2+x)1.dx{ddx{log(2+x)}1.dx}dx
=xlog(2+x)12+xxdx
=xlog(2+x)2+x22+xdx
=xlog(2+x)2+x2+xdx+22+xdx
=xlog(2+x)x+2log(2+x)
I2=11log(2+x)dx=[xlog(2+x)x+2log(2+x)]11
=1log(3)1+2log3(1)log112log1
=3log32 [log1=0]
I=I1I2
=3log323log3+2
=0.

1190044_1327695_ans_f741a1f5832d4dda84894ed038c4ea94.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon