I=∫1−1log(2−x2+x)
=∫1−1log(2−x)dx−∫1−1log(2+x)dx [∵logmn=logm−logn]
=I1−I2
Let I′1=∫log(2−x)dx
Using integration by parts where u=log(2−x),v=1
I′1=log(2−x)∫1dx−∫{ddx{log(2−x)}∫1dx}dx.
=xlog(2−x)−∫−12−xxdx
=xlog(2−x)−∫2−x−22−xdx
=xlog(2−x)−∫2−x2−xdx+∫22−xdx
=xlog(2−x)−x+2log(2−x)−1
=xlog(2−x)−x−2log(2−x)
I1=∫1−1log(2−x)dx=[xlog(2−x)−x−2log(2−x)]1−1
=1log(2−1)−1−2log(2−1)−(−1)log(2+1)+(−1)+2log(2+1)
=log1−1−2log1+log(3)−1+2log3
=−2+3log3 [since log1=0]
=3log3−2.
Similarly,
Let I′2=∫log(2+x)dx
=log(2+x)∫1.dx−∫{ddx{log(2+x)}∫1.dx}dx
=xlog(2+x)−∫12+xxdx
=xlog(2+x)−∫2+x−22+xdx
=xlog(2+x)−∫2+x2+xdx+∫22+xdx
=xlog(2+x)−x+2log(2+x)
∴I2=∫1−1log(2+x)dx=[xlog(2+x)−x+2log(2+x)]1−1
=1log(3)−1+2log3−(−1)log1−1−2log1
=3log3−2 [∵log1=0]
∴I=I1−I2
=3log3−2−3log3+2
=0.