The correct option is D 1
x2−(y−z)2(x+z)2−y2+y2−(x−z)2(x+y)2−z2+z2−(x−y)2(y+z)2−x2 [Using (a2−b2)=(a+b)(a−b)]
=[x−(y−z)](x+y−z)(x+z−y)(x+z+y)+[y−(x−z)](y+x−z)(x+y−z)(x+y+z)+[z−(x−y)](z+x−y)(y+z−x)(y+z+x)
=(x−y+z)(x+y−z)(x+z−y)(x+z+y)+(y−x+z)(y+x−z)(x+y−z)(x+y+z)+(z−x+y)(z+x−y)(y+z−x)(y+z+x)
=x+y−zx+y+z+y+z−xx+y+z+z+x−yx+y+z
=x+y−z+y+z−x+z+x−yx+y+z
=x+y+zx+y+z
=1