Choose the correct answer
∫dxsin2xcos2x is equal to
(a)tan x+cot x +C
(b)tan x-cot x+C
(c)tan xcot x+C
(d)tan x-cot 2x+C
∫dxsin2xcos2x=∫sin2x+cos2xsin2x.cos2xdx [∴sin2x+cos2x=1]=∫sin2xsin2x.cos2xdx+∫cos2xsin2x.cos2xdx=∫1cos2xdx+∫1sin2xdx=∫sec2xdx+∫cosec2xdx=tanx−cotx+C
Hence, (b) is the correct option.