Byju's Answer
Standard XII
Mathematics
Improper Integrals
Differentiate...
Question
Differentiate
tan
-
1
1
-
x
1
+
x
with respect to
1
-
x
2
,
if
-
1
<
x
<
1
Open in App
Solution
Let
,
u
=
tan
-
1
1
-
x
1
+
x
Put
x
=
tan
θ
⇒
θ
=
tan
-
1
x
⇒
u
=
tan
-
1
1
-
tan
θ
1
+
tan
θ
⇒
u
=
tan
-
1
tan
π
4
-
θ
.
.
.
i
Here
,
-
1
<
x
<
1
⇒
-
1
<
tan
θ
<
1
⇒
-
π
4
<
θ
<
π
4
⇒
π
4
>
-
θ
>
π
4
⇒
-
π
4
<
-
θ
<
π
4
⇒
0
<
π
4
-
θ
<
π
2
So
,
from
equation
i
,
u
=
π
4
-
θ
Since
,
tan
-
1
tan
θ
=
θ
,
if
θ
∈
-
π
2
,
π
2
⇒
u
=
π
4
-
tan
-
1
x
Differentiating it with respect to x,
d
u
d
x
=
0
-
1
1
+
x
2
⇒
d
u
d
x
=
-
1
1
+
x
2
.
.
.
ii
And
let
,
v
=
1
-
x
2
Differentiating it with respect to x,
d
v
d
x
=
1
2
1
-
x
2
×
d
d
x
1
-
x
2
⇒
d
v
d
x
=
1
2
1
-
x
2
-
2
x
⇒
d
v
d
x
=
-
x
1
-
x
2
.
.
.
iii
Dividing
equation
ii
by
iii
,
d
u
d
x
d
v
d
x
=
-
1
1
+
x
2
×
1
-
x
2
-
x
∴
d
u
d
v
=
1
-
x
2
x
1
+
x
2
Suggest Corrections
0
Similar questions
Q.
Differentiate
tan
−
1
[
√
1
+
x
2
−
1
x
]
with respect to
x
.
Q.
Differentiate
tan
-
1
x
1
-
x
2
with respect to
sin
-
1
2
x
1
-
x
2
,
if
-
1
2
<
x
<
1
2
Q.
(a) Differentiate
y
=
cos
−
1
(
1
−
x
2
1
+
x
2
)
with respect to
x
,
0
<
x
<
1
,
(b) Differentiate
x
x
−
2
sin
x
with respect to
x
Q.
Differentiate
y
=
cos
−
1
(
1
−
x
2
1
+
x
2
)
with respect to
x
,
0
<
x
<
1
,
Related Videos
Improper Integrals
MATHEMATICS
Watch in App
Explore more
Improper Integrals
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app