CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

Differentiate the given functions w.r.t. x.

xx cos x+x2+1x21.


Solution

Let    y=xx cos x+x2+1x21

Let                             u=xx cos x,v=x2+1x21 

                           y = u + v

Differentiating w.r.t. x,

     dydx=dudx+dvdx

Now,               u=xx cos x

Taking log on both sides, log u = x cos x log x

Differentiating w.r.t. x,

ddx(log u)=x cos xddx(log x)+log xddx(x cos x)=x cos x×1x+log x[x ddxcos x+cos x ddx(x)]    1ududx=x cos x×1x=log x[(x sin x)+cos x]    dudx=u[cos xx sin x log x+cos x.log x]    dudx=xx cos x[cos xx sin x log x+cos x.log x]Again,         v=x2+1x21Taking log on both sides,log v=log (x2+1)log(x21)Differentiating w.r.t. x,   ddxlog v=ddxlog(x2+1)ddxlog(x21)   1vdvdx=1(x2+1)ddx(x2+1)1(x21)ddx(x21)   1vdvdx=2x(x2+1)2x(x21)=2x[(x21)(x2+1)(x21)(x21)]   dvdx=v[4xx41]=x2+1x21[4xx41]Now, putting the values of dudx and dvdx in Eq. (i)   dydx=xx cos x[cos xx sin x log x +cos x.log x]+x2+1x21[4xx41]    =xx cos x[cos x.(1+log x)x sin x log x]4x(x21)2

flag
 Suggest corrections
thumbs-up
 
0 Upvotes


Similar questions
View More...



footer-image