Discuss the continuity of the following functions :
(a) f(x) = sin x + cos x
(b) f(x) = sin x + cos x
(c) f(x) = sin x cos x
(a) f(x) =sin x + cos x =√2(1√2sin x+1√2cos x)
=√2(cos π4sin x+cos x sin π4)=√2 sin(x +π4)
At x = a, where a ϵ R
LHL=limx→a−f(x)=limx→a−√2sin(x+π4)=limh→0√2sin(a−h+π4)
=√2 limh→0[sin(a+π4)cos h−cos(a+π4)sin h]
[∴ sin(A-B)=sin A cos B - cos A sin B]
=√2 sin(a+π4)cos 0−√2 cos(a+π4)sin 0=√2 sin(a+π4)
RHL=limx→a−f(x)=limx→0−√2sin(x+π4)=limh→0√2sin(a+h+π4)
=√2 limh→0[sin(a+π4)cos h+cos(a+π4)sin h]
[∵ sin(A+B)=sin A cos B - cos A sin B]
=√2 sin(a+π4)cos 0−sin 0 cos(a+π4)
=√2 sin(a+π4)
Also, f(a)=√2 sin(a+π4)
∴ LHL = RHL = f(a)
Hence, f(x) is continuous at all points.
Here, f(x) = sin x-cos x
=√2 sin(1√2sin x−1√2cos x)=√2 sin(sin x cosπ4−cos x sinπ4)
=√2 sin(x−π4)
At x=a , where a ϵ R
LHL = limx→a−f(x)=limx→a−√2sin(x−π4)=limh→0√2sin(a−h−π4)
=limh→0√2[sin(a−π4)cos h−cos(a−π4)sin h]
=√2[sin (a−π4)cos 0−cos(a−π4)sin 0]=√2 sin(a−π4)
RHL = limx→a+√2sin(x−π4)=limh→0√2sin(a+h−π4)
limh→0=√2[sin(a−π4)cos h+cos(a−π4)sin h]
[Use formula sin (A+B)]
=√2[sin (a−π4)]cos 0+√2cos(a−π4)sin 0=√2 sin(a−π4)
Also, f(a) =√2 sin(a−π4)
∴ LHL = RHL = f(a). Hence, f(x) is continuous at all points.
Here, f(x) =sin x cos x
f(x)=12×2 sin x cos x =12sin 2x
At x=a, where aϵR
LHL = limx→a−f(x)=limx→a−12sin 2x =limh→0 12sin 2(a−h)
=limh→0 12[sin 2a cos 2h−cos 2a sin 2h]
=12[sin 2a cos 0−cos 2a sin 0]=12sin 2a[Use formula sin(A+B)]
RHL = limx→a+f(x)=limx→a+12sin 2x =limh→012sin 2(a+h)
=limh→012[sin 2a cos 2h−cos 2a sin 2h][Use formula sin(A-B)]
=12sin 2a
Also, f(a)=12 sin 2a
Therefore LHL=RHL=f(a).
Hence, f(x) is continuous at all points.