wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Discuss the continuity of the following functions :

(a) f(x) = sin x + cos x

(b) f(x) = sin x + cos x

(c) f(x) = sin x cos x

Open in App
Solution

(a) f(x) =sin x + cos x =2(12sin x+12cos x)

=2(cos π4sin x+cos x sin π4)=2 sin(x +π4)

At x = a, where a ϵ R

LHL=limxaf(x)=limxa2sin(x+π4)=limh02sin(ah+π4)

=2 limh0[sin(a+π4)cos hcos(a+π4)sin h]

[ sin(A-B)=sin A cos B - cos A sin B]

=2 sin(a+π4)cos 02 cos(a+π4)sin 0=2 sin(a+π4)

RHL=limxaf(x)=limx02sin(x+π4)=limh02sin(a+h+π4)

=2 limh0[sin(a+π4)cos h+cos(a+π4)sin h]

[ sin(A+B)=sin A cos B - cos A sin B]

=2 sin(a+π4)cos 0sin 0 cos(a+π4)

=2 sin(a+π4)

Also, f(a)=2 sin(a+π4)

LHL = RHL = f(a)

Hence, f(x) is continuous at all points.

Here, f(x) = sin x-cos x

=2 sin(12sin x12cos x)=2 sin(sin x cosπ4cos x sinπ4)

=2 sin(xπ4)

At x=a , where a ϵ R

LHL = limxaf(x)=limxa2sin(xπ4)=limh02sin(ahπ4)

=limh02[sin(aπ4)cos hcos(aπ4)sin h]

=2[sin (aπ4)cos 0cos(aπ4)sin 0]=2 sin(aπ4)

RHL = limxa+2sin(xπ4)=limh02sin(a+hπ4)

limh0=2[sin(aπ4)cos h+cos(aπ4)sin h]

[Use formula sin (A+B)]

=2[sin (aπ4)]cos 0+2cos(aπ4)sin 0=2 sin(aπ4)

Also, f(a) =2 sin(aπ4)

LHL = RHL = f(a). Hence, f(x) is continuous at all points.

Here, f(x) =sin x cos x

f(x)=12×2 sin x cos x =12sin 2x

At x=a, where aϵR

LHL = limxaf(x)=limxa12sin 2x =limh0 12sin 2(ah)

=limh0 12[sin 2a cos 2hcos 2a sin 2h]

=12[sin 2a cos 0cos 2a sin 0]=12sin 2a[Use formula sin(A+B)]

RHL = limxa+f(x)=limxa+12sin 2x =limh012sin 2(a+h)

=limh012[sin 2a cos 2hcos 2a sin 2h][Use formula sin(A-B)]

=12sin 2a

Also, f(a)=12 sin 2a

Therefore LHL=RHL=f(a).
Hence, f(x) is continuous at all points.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon