The correct option is D √2ex/2sinx2+C
Let I=∫ex/2⋅sin(x2+π4)dx
=2sin(x2+π4)ex/2−∫cos(x2+π4)⋅12⋅2ex/2dx+C
=2sin(x2+π4)⋅ex/2−2ex/2⋅cos(x2+π4)−∫sin(x2+π4)⋅12⋅2ex/2dx
Therefore,
2I=2ex/2{sin(x2+π4)−cos(x2−π4)}
⇒I=ex/2{sin(x2+π4)−cos(x2+π4)}
=√2ex/2⋅(sinx2)=√2⋅ex/2⋅sinx2+C.
Trick: By inspection,
ddx[√2ex/2⋅sinx2+C]
=√2[12ex/2⋅cosx2+12ex/2⋅sinx2]
=ex/2[1√2cosx2+1√2sinx2]
=ex/2⋅sin(x2+π4).