I=∫1x√1+xndx
Let 1+xn=t2 ⇒ nxn−1dx=2t dt
⇒ nxndxx=2t dt ⇒ dxx = 2t dtn(t2−1)
I =∫2t dtn(t2−1)t= ∫1n(1t−1−1t+1)dt = 1n ln(t−1)− ln(t+1)
=1nln∣∣∣√1+xn−1√1+xn+1∣∣∣+C
Hence answer is B
Prove that:
n! / r! x (n-r)! + n! / (r-1)! x (n-r+1) = (n+1)! / r! x (n-r+1)!
The value oflimx→1xn+xn−1+xn−2+.......+x2+x−nx−1