The correct option is D 2tan−1√x+1x+1+C
Let I=∫(x−1)dx(x+1)√x3+x2+x=∫(x2−1)dx(x+1)2√x3+x2+x
=∫x2(1−1x2)dx(x2+2x+1)√x3+x2+x=∫x2(1−1x2)dxx(x+2+1x).x.√x+1+1x
Substitute x+1x=t⇒(1−1x2)dx=dt
Let I=∫dt(t+2)√t+1
Substitute 1+t=z2⇒dt=2zdz
I=∫2zdz(z2+1)√z2=2∫dzz2+1=2tan−1(z)+c
=2tan−1√1+t+c=2tan−1√x2+x+1x+c