CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

Draw the graph of $$2x+y=6$$ and $$2x-y+2=0$$. Shade the region bounded by these lines and $$x-y$$. Find the area of the shaded region. 


Solution

$$\begin{array}{l} 2x+y=6 \\ put\, \, x=0 \\ y=6 \\ put\, x=1 \\ y=4 \\ put\, \, x=2 \\ y=2 \\ and\, \, 2x-y+2=0 \\ put\, \, y=0 \\ x=1 \\ put\, \, x=0 \\ y=2 \\ put\, x=2 \\ y=6 \\ and\, \, x-y=0 \\ x=0,\, \, y=0 \\ x=1,y=1 \\ x=2,\, y=2 \end{array}$$
Area of bounded region
$$\begin{array}{l} \frac { 1 }{ 2 } \left[ { 1\left( { -2-2 } \right) -2\left( { 2-4 } \right) +2\left( { 4+2 } \right)  } \right]  \\ \frac { 1 }{ 2 } \left[ { -4+4+12 } \right]  \\ 6\, \, sq.\, unit \end{array}$$

1196765_1316469_ans_3744a2a2a98c4602bedc24f58d51e5ae.JPG

Mathematics

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image