1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Angle between Two Planes
d y d x=e x+y...
Question
d
y
d
x
=
e
x
+
y
+
e
-
x
+
y
Open in App
Solution
We
have
,
d
y
d
x
=
e
x
+
y
+
e
-
x
+
y
⇒
d
y
d
x
=
e
y
e
x
+
e
-
x
⇒
e
-
y
d
y
=
e
x
+
e
-
x
d
x
Integrating
both
sides
,
we
get
∫
e
-
y
d
y
=
∫
e
x
+
e
-
x
d
x
⇒
-
e
-
y
=
e
x
-
e
-
x
+
C
⇒
e
-
x
-
e
-
y
=
e
x
+
C
Hence
,
e
-
x
-
e
-
y
=
e
x
+
C
is
the
required
solution
.
Suggest Corrections
0
Similar questions
Q.
The general solution of the differential equation
d
y
d
x
=
e
x
+
y
, is
(a) e
x
+ e
−y
= C
(b) e
x
+ e
y
= C
(c) e
−
x
+ e
y
= C
(d) e
−x
+ e
−y
= C
Q.
If
y
=
e
x
+
e
-
x
, prove that
d
y
d
x
=
y
2
-
4
Q.
If
y
=
e
x
-
e
-
x
e
x
+
e
-
x
, prove that
d
y
d
x
=
1
-
y
2
Q.
If
y
=
1
+
e
x
1
-
e
x
,
show
that
d
y
d
x
=
e
x
1
-
e
x
1
-
e
2
x
Q.
Which of the following is/are a solution
of the differential equation
dy
dx
=
e
x
?