Evaluate:
∣∣
∣∣a−b−c2a2a2bb−c−a2b2c2cc−a−b∣∣
∣∣
We have, ∣∣
∣∣a−b−c2a2a2bb−c−a2b2c2cc−a−b∣∣
∣∣=∣∣
∣∣a+b+ca+b+ca+b+c2bb−c−a2b2c2cc−a−b∣∣
∣∣ [∵R1→R1+R2+R3]
=(a+b+c)∣∣
∣∣1112bb−c−a2b2c2cc−a−b∣∣
∣∣
[taking (a+b+c) common from the first row]
=(a+b+c)∣∣
∣
∣∣0010−(a+b+c)2b(a+b+c)(a+b+c)(c−a−b)∣∣
∣
∣∣
[∵C1→C1−C3 and C2→C2−C3]
Expanding along R1,
=(a+b+c)[1{0+(a+b+c)2}]=(a+b+c)[(a+b+c)2]=(a+b+c)3