The correct option is
C 14+π8We have to find
∫10dx(1+x2)2
Substitute x=tanu
Differentiating we get, dx=sec2udu⇒dx=1cos2udu
Also when x=0,u=tan−1x=tan−1(0)=0 and when x=1,u=tan−1x=tan−1(1)=π4.
∴∫10dx(1+x2)2=∫π/401cos2u(1+tan2u)2du
Since tan2u=sec2u−1 we get
=∫π/401cos2u(1+sec2u−1)2du
=∫π/401cos2u(sec2u)2du
=∫π/401cos2u(sec4u)du
=∫π/40cos4ucos2udu
=∫π/40cos2udu
Since cos2u=1+cos(2u)2 we get
=∫π/401+cos(2u)2du
=12∫π/40(1+cos2u)du
=12[u+sin2u2]π/40
=12[π4+sin(π/2)2−0−0]
=12[π4+12]
=π8+14
∴∫10dx(1+x2)2=π8+14