The correct option is A ⎛⎜⎝K∑r=1(r−1)⎡⎢⎣r1n−(r−1)1n⎤⎥⎦⎞⎟⎠+K⎛⎜⎝a−K1n⎞⎟⎠
Let K be a natural number such that K≤an≤K+1
Then, ∫a0[xn]dx=∫10[xn]dx+∫21n1[xn]dx+∫31n21n[xn]dx+⋯+∫K1n(K−1)1n[xn]dx+∫(an)1nK1n[xn]dx
=∫100dx+∫21n11dx+∫31n21n2dx+⋯+∫K1n(K−1)1n(K−1)dx+∫(an)1nK1nKdx
=0+1.⎛⎜⎝21n−1⎞⎟⎠+2.⎛⎜⎝31n−21n⎞⎟⎠+⋯+(K−1)⎛⎜⎝K1n−(K−1)1n⎞⎟⎠+K⎛⎜⎝a−K1n⎞⎟⎠
⟹⎛⎜⎝K∑r=1(r−1)⎡⎢⎣r1n−(r−1)1n⎤⎥⎦⎞⎟⎠+K⎛⎜⎝a−K1n⎞⎟⎠
Ans: A