The correct option is
A 3x(log3)2+16[(log3)cos4x+4sin4x]+cL=∫3xcos4xdx. ...... (i)
=cos4x∫3xdx+∫4sin4x3x(log3)dx.
=3xcos4xlog(3)+4log3∫3xsin4x dx ...... (ii)
Now, ∫3xsin4xdx=sin4x3xlog3−∫4cos4x⋅3xlog3
=3xsin4xlog3−4log3∫3xcos4xdx
=3xsin4xlog3−4log3L ..... From (i)
∴L=3xcos4xlog3+4log3[3xsin4xlog3−4log3×L] ..... From (ii)
L((log3)2+42(log3)2)=3x(log3)2[cos4x(log3)+4sin4x]
L=3x(log3)2+42[(log3)cos4x+4sin4x]+c