wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate each of the following integrals:

-π4π4tan2x1+exdx

Open in App
Solution


Let I = -π4π4tan2x1+exdx .....(1)
Then,
I=-π4π4tan2π4+-π4-x1+eπ4+-π4-xdx abfxdx=abfa+b-xdx=-π4π4tan2-x1+e-xdx=-π4π4tan2x1+1exdx=-π4π4extan2xex+1dx .....2

Adding (1) and (2), we get

2I=-π4π4tan2x1+ex+extan2x1+exdx2I=-π4π41+extan2x1+exdx2I=-π4π4tan2xdx2I=-π4π4sec2x-1dx
2I=-π4π4sec2xdx--π4π4dx2I=tanx-π4π4-x-π4π42I=tanπ4-tan-π4-π4--π42I=1+1-2π42I=2-π2I=1-π4


Disclaimer: This answer does not matches with the given answer in the book.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon