We have,
f(x)=ddx[(cosx)logx+(logx)x]
Let,
y1=(cosx)logx......(1)
and
y2=(logx)x.......(2)
f(x)=dy1dx+dy2dx.......(A)
Taking log both side and we get,
logy1=log(cosx)logx
logy1=logx.log(cosx)......(1)
logy2=log(logx)x
logy2=xlog(logx).......(2)
Differentiation equation (1) with respect to x and we get,
dlogy1dx=ddx(logx.logcosx)
1y1dy1dx=logxddxlogcosx+logcosxddxlogx
1y1dy1dx=logx1cosxsinx+logcosxx
1y1dy1dx=tanxlogx+logcosxx
dy1dx=y1(tanxlogx+logcosxx)
dy1dx=(cosx)logx(tanxlogx+logcosxx)
Differentiation equation (2) with respect to x and we get,
ddxlogy2=ddxx.loglogx
1y2dy2dx=x1logx1x+loglogx(1)
1y2dy2dx=1logx+loglogx
dy2dx=y2(1logx+loglogx)
dy2dx=(logx)x(1logx+loglogx)
Put the value of dy1dxanddy2dx in equation (A) and we get,
f(x)=(cosx)logx(tanxlogx+logcosxx)+(logx)x(1logx+loglogx)Hence, this is the answer,