wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate a0a2x2dx

Open in App
Solution

a0a2x2dx
Let x=asiny
dx=acosydy
a0ax2dx
=π20a2a2sin2y.acosydy
I=π20a2cos2ydy
Applying properties of definite integrals
I=π20a2cos2(π2y)dy=π20a2sin2ydy
Therefore
2I=π20a2(cos2y+sin2y).dy
2I=π20a2dy
2I=a2π2
I=a2π4.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon