wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx:y=cos1(2x1+x2),1<x<1

Open in App
Solution

y=cos1(2x1+x2);1<x<1,x(1,1)
we know is continuous and difft,
i.e., we can write as
y=cos1(2x1+x2)
cosy=2x1+x2,y=f(x)
differentiating w.r to x
ddx(cosy)=2ddx[x1+x2] Using d(x,y)=xdy+ydx))
sinydydx=2[11+x2x(1+x2)2.2x]
sinydydx=2[1+x22x2(1+x2)2]sinydydx=2[1x2(1+x2)2]dydx=2siny[1x2(1+x2)2]
we know that
cosy=2x1+x2cos2y+sin2y=1siny=12x1+x2
siny=1x21+x2dydx=21x21+x2=[1x2(1+x2)2]
dydx=2(1x2)1/2(1x2)3/2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon