Find dydxin the following questions:
y=cos−1(2x1+x2), -1<x<1.
Substitute x=tan θ=tan−1
y=cos−1(2tant θ1+tan2 θ)
⇒ y=cos−1(sin 2θ) (∵sin 2θ=2tant θ1+tan2 θ)
⇒ y=cos−1[cos(πx−2θ)] (∵sin 2θ=cos(π2−2θ))
⇒ y=π2−2θ⇒y=π2−2tan−1x ∵θ=tant−1x
Differentiating both sides w.r.t x, we get
dydx=0−21+x2⇒dydx=−21+x2 [∵(tan−1x=11+x2)]