To find: ∫√x2+2x+5.dx
=∫√x2+2x+1+4.dx
=∫√(x+1)2+4.dx
Let t=x+1
⇒dt=dx
Substituting,
=∫√t2+4.dt
=∫√t2+(2)2.dt
[Using ∫√(x2+a2).dx=12x√(x2+a2)+a22log∣∣x+√(x2+a2)∣∣]
=t2√t2+4+42log∣∣x+√(t2+4)∣∣+C
=t2√t2+4+2log∣∣x+√(t2+4)∣∣+C
Putting the value of t=x+1
=x+12√(x+1)2+4+2log∣∣x+1+√(x+1)2+4∣∣+C
=12(x+1)√x2+2x+5+2log∣∣x+1+√x2+2x+5∣∣+C
Where C is constant of integration.