Find the condition that curves 2x=y2 and 2xy = k inersect orthogonally.
Given equation of curves are 2x=y2and 2xy=k ⇒y=k2xfrom eq(i), 2x=(k2x)2⇒8x3=k2⇒x3=18k2⇒x=12k23∴y=k2x=k212k23=k13
From Eqs. (i) and (ii),
2=2ydydx
and 2[x.dydx+y.1]=0⇒dydx=1yand(dydx)=−2y2x=−yx⇒(dYdx)(12k23k13)=−k1312K23=−2K−13
Since, the curves intersect orthogonally.
i.e., m1.m2=−1⇒1k13.(−2k−13)=−1⇒−2k−23=−1⇒2k23=1⇒k23=2∴k2=8