wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the coordinates of the centres, and the radii, of the four circles which touch the sides of the triangle the coordinates of whose angular points are the points (6,0), (0,6), and (7,7).

Open in App
Solution

BC=a=(60)2+(06)2=62AC=b=(76)2+(71)2=52AB=c=(70)2+(76)2=52

Coordinates of incentre are

(aA+bB+cCa+b+c)(7×62+6×52+0×5262+52+52,7×62+0×52+6×5262+52+52)I(92,92)

Equation of BC is

y0=6006(x6)x+y=6

Inradius = perpendicular distance of I from BC

r=92+92612+12=32=322

Coordinates of O1 are

(aA+bB+cCa+b+c)(7×62+6×52+0×5262+52+52,7×62+0×52+6×5262+52+52)O1(3,3)

radius = perpendicular distance of O1 from BC

r1=|336|12+12=122=62

Coordinates of O2 are

(aAbB+cCab+c)(7×626×52+0×526252+52,7×620×52+6×526252+52)(2,12)

Equation of AC is

y6=7670(x0)x7y+42=0

r2=perpendicular distance of O2 from AC

r2=|212(7)+42|12+72=4052=42

Coordinates of O3 are

(aA+bBcCa+bc)(7×62+6×520×5262+5252,7×62+0×526×5262+5252)(12,2)

Equation of AB is

y0=7076(x6)

y=7x42

7xy42=0

r3=perpendicular distance of O3 from AB

r3=|12(7)242|49+1=4052=42


698596_640676_ans_e4dc6692c0994e17ab81959b0e307278.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Concepts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon