BC=a=√(6−0)2+(0−6)2=6√2AC=b=√(7−6)2+(7−1)2=5√2AB=c=√(7−0)2+(7−6)2=5√2
Coordinates of incentre are
(aA+bB+cCa+b+c)(7×6√2+6×5√2+0×5√26√2+5√2+5√2,7×6√2+0×5√2+6×5√26√2+5√2+5√2)I(92,92)
Equation of BC is
y−0=6−00−6(x−6)x+y=6
Inradius = perpendicular distance of I from BC
r=92+92−6√12+12=3√2=3√22
Coordinates of O1 are
(−aA+bB+cC−a+b+c)(−7×6√2+6×5√2+0×5√2−6√2+5√2+5√2,−7×6√2+0×5√2+6×5√2−6√2+5√2+5√2)O1(−3,−3)
radius = perpendicular distance of O1 from BC
r1=|−3−3−6|√12+12=12√2=6√2
Coordinates of O2 are
(aA−bB+cCa−b+c)(7×6√2−6×5√2+0×5√26√2−5√2+5√2,7×6√2−0×5√2+6×5√26√2−5√2+5√2)(2,12)
Equation of AC is
y−6=7−67−0(x−0)x−7y+42=0
r2=perpendicular distance of O2 from AC
r2=|2−12(7)+42|√12+72=405√2=4√2
Coordinates of O3 are
(aA+bB−cCa+b−c)(7×6√2+6×5√2−0×5√26√2+5√2−5√2,7×6√2+0×5√2−6×5√26√2+5√2−5√2)(12,2)
Equation of AB is
y−0=7−07−6(x−6)
y=7x−42
7x−y−42=0
r3=perpendicular distance of O3 from AB
r3=|12(7)−2−42|√49+1=405√2=4√2