Given: Equation of hyperbola is 49y2−16x2=784
i.e, y216−x249=1
On comparing the given equation with y2a2−x2b2=1 we get
a2=16⇒a=4 and b2=49⇒b=7
⇒c=√(a2+b2)
=√(16+49)=√65
Then,
The coordinates of the foci =(0,±c)=(0,±√65)
a=4,b=7,c=√65
The coordinates of the vertices =(0,±a)=(0,±4)
Eccentricity, e=ca=√654
Length of latus rectum =2b2a
=2×494
=492