CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

Find the derivative of y with respect to x at  x=1, where function y is expressed as  y=x3+1  .
  1. 32
  2. 322
     
  3. 325
  4. 122
     


Solution

The correct option is B 322
 
We have,  y=x3+1

let μ(x)=x3+1

y=μ,dydμ=12μ

and we know from chain rule:

dydx=dydμ.dμdx

and dμdx=ddx(x3+1)=3x2

dydx=3x22x3+1

At (x=1)

dydx=3×12213+1=322

flag
 Suggest corrections
thumbs-up
 
0 Upvotes


Similar questions
View More


People also searched for
View More



footer-image