→r(^i−^j+^k)=5⇒(x^i+y^j+z^k)⋅(^i−^j+^k)=5⇒x−y+z=5⋯(1)
→r=(2^i−^j+2^k)+λ(3^i+4^j+2^k)x−23=y+14=z−22=λ
The required point will have coordinates -
(3λ+2,4λ−1,2λ+2)⋯(2)
This point lies on the plane (1)
⇒3λ+2−4λ+1+2λ+2=5⇒λ=0
Put the value of λ in (2)
∴ The point of intersection of the given line and the plane is (2,−1,2)
Distance between (2,−1,2) and (−1,−5,−10) is √(2+1)2+(−1+5)2+(2+10)2=13