Question

# Find the equation of the tangent and the normal to the following curve at the indicated point.$$xy=c^2$$ at $$\left (ct, \dfrac {c}{t}\right)$$.

Solution

## $$xy=c^2$$Differentiating both sides w.r.t. $$x,$$$$\Rightarrow$$  $$x\dfrac{dy}{dx}+y=0$$$$\Rightarrow$$  $$\dfrac{dy}{dx}=\dfrac{-y}{x}$$$$\Rightarrow$$  $$(x_1,y_1)=\left(ct,\dfrac{c}{t}\right)$$Slope of tangent, $$m=\left(\dfrac{dy}{dx}\right)_{\left(ct,\dfrac{c}{t}\right)}=\dfrac{\dfrac{-c}{t}}{ct}=\dfrac{-1}{t^2}$$Equation of tangent is,$$y-y_1=m(x-x_1)$$$$\Rightarrow$$  $$y-\dfrac{c}{t}=\dfrac{-1}{t^2}(x-ct)$$$$\Rightarrow$$  $$\dfrac{yt-c}{t}=\dfrac{-1}{t^2}(x-ct)$$$$\Rightarrow$$  $$yt^2-ct=-x+ct$$$$\Rightarrow$$  $$x+yt^2=2ct$$Equation of normal is,$$y-y_1=\dfrac{-1}{m}(x-x_1)$$$$\Rightarrow$$  $$y-\dfrac{c}{t}=t^2(x-ct)$$$$\Rightarrow$$  $$yt-c=t^3x-ct^4$$$$\Rightarrow$$  $$xt^3-yt=ct^4-c$$$$\therefore$$  Equation of tangent is $$x+yt^2=2ct$$.$$\therefore$$  Equation of normal is $$xt^3-yt=ct^4-c$$Mathematics

Suggest Corrections

0

Similar questions
View More

People also searched for
View More