Equation of plane passing through point (−1,3,2)
a(x+1)+b(y−3)+c(z−2)=0....(1)
x+2y+2z=11........(2)
and 3x++2z=15...(3)
∵ plane (1) is perpendicular to plane (2) and (3)
∴ by condition or perpendicularity
a1a2+b1b2+c1c2=0
a+2b+2c=0......(4)
3a+3b+2c=0.....(5)
by solving the equation (4) and (5)
a4−6=b6−2=c3−6
a2=b−4=c3
Let a2=b−4=c3=K
∴ a=2K,b=−4K,c=3K
Putting the value of aa,b,c in equation (1)
2K(x+1)−4K(y−3)+3K∗z−2)=0
K[2(x+1)−4(y−3)+3(z−2)]=0
2x+2−4y+12+3z−6=0
2x−4y+3z+8=0
This is the required equation.