The equation of the curve is:-
x2−6xy+y2−10x−10y−19=0
The foci are given by
(x′−3y′−5)2−(−3x′+y′−5)20=(X)(Y)3
Where, X=x′−3y′−5
Y=−3x′+y′−5
and XY5=x′X+y′Y−5x′−5y′−19
The first pair gives either X=Y or X=−Y
If X=Y, then x=y and X=−Y=−2x−5
Putting in the second pair, we get
(2x+5)2−3=−x(4x+10)−10x−19 or
x2+5x+4=0; so x=−4 or −1
and y=−4 or −1
The foci are therefore (−1,−1) and (−4,−4)
The directrices are the polars of the foci;-
−3x−3y+5+5−19=0
and 3x+3y+40−19=0
i.e., x+y+3=0 and x+y+7=0