Byju's Answer
Standard XII
Mathematics
Linear Differential Equations of First Order
Find the gene...
Question
Find the general solution of the differential equation
(
1
+
y
2
)
d
x
=
(
tan
−
1
y
−
x
)
d
y
Open in App
Solution
(
1
+
y
2
)
d
x
=
(
t
a
n
−
1
y
−
x
)
d
y
d
x
d
y
=
t
a
n
−
1
y
1
+
y
2
=
x
1
+
y
2
d
x
s
y
+
x
1
+
y
2
=
t
a
n
−
1
y
1
+
y
2
d
x
d
y
+
x
1
+
y
2
=
t
a
n
−
1
y
1
+
y
2
________ (1)
Integrating factor =
e
∫
1
1
+
y
2
d
y
=
e
t
a
n
−
1
y
now, solution of equation (1) is
x
×
I
.
F
=
∫
I
.
F
×
t
a
n
−
1
y
1
+
y
2
d
y
x
.
e
t
a
n
−
1
y
=
∫
e
t
a
n
−
1
y
t
a
n
−
1
y
1
+
y
2
d
y
_________ (2)
x
.
e
t
a
n
−
1
y
⇒
let
t
a
n
−
1
y
=
p
1
1
+
y
2
d
y
=
d
p
So RHS in equation (2) is
∫
e
t
a
n
−
1
y
.
t
a
n
−
1
y
1
+
y
2
d
y
=
∫
P
.
e
p
d
p
=
p
e
p
−
p
From equation (2)
x
e
t
a
n
−
1
y
=
t
a
n
−
1
y
e
t
a
n
−
1
y
−
t
a
n
−
1
y
+
c
x
e
t
a
n
−
1
y
=
t
a
n
−
1
y
(
e
t
a
n
−
1
y
−
1
)
+
c
Suggest Corrections
0
Similar questions
Q.
Find general solution of differential solution given below:
(
1
+
y
2
)
d
x
=
(
tan
−
1
y
−
x
)
d
y
Q.
Solution of the differential equation
(
1
+
y
2
)
d
x
=
(
1
−
t
a
n
−
1
y
−
x
)
d
y
is
Q.
Find the particular solution of the differential equation
(
t
a
n
−
1
y
−
x
)
d
y
=
(
1
+
y
2
)
d
x
, given that when
x
=
0
,
y
=
0
.
Q.
Solve differential equation
(
1
+
y
2
)
d
x
=
(
tan
−
1
y
−
x
)
d
y
.
Q.
Solve the differential equation:
(
tan
−
1
y
−
x
)
d
y
=
(
1
+
y
2
)
d
x
.
View More
Related Videos
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Explore more
Linear Differential Equations of First Order
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app