Find the HCF of 15 and 18 using Euclids Division Lemma.
Euclid’s division lemma
For any two positive integers a and b, there exists unique integers q and r which satisfies the condition a=bq+r where 0≤b<r.
In a=bq+r,
if r=0 then b is called HCF of (a,b).
Given numbers are, 18 and 15.
Since, 18>15.
Dividend (a)=18 and the divisor (b)=15$
Step 1:
18=15×1+3
Step 2:
15=3×5+0
Here the remainder is 0.
⇒ HCF of 18 and 15 is 3.
Hence, Option D is correct.