Find the integral of the function: 1sin x cos3x
=∫sec2x(tan x+cot x).dx
=∫sec2x(tan x+1tan x).dx
=∫(tan x+1tan x).sec2x.dx
Putting tan x=t
Differentiating w.r.t.x
⇒sec2x=dtdx⇒ sec2x dx=dt
Thus,
=∫(tan x+1tan x).sec2x.dx
=∫(t+1t).dt
=∫t.dt+∫1t.dt
=t22+log|t|+C
Putting value of t=tan x
=tan2x2+log|tan x|+C
Where C is constant of integration.