wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the integral of the function: 1sin x cos3x


Open in App
Solution

1sin x cos3x.dx

=sin2x+cos2xsin x cos3x.dx

[sin2x+cos2x=1]

=(sin2xsin x.cos3x+cos2xsin x cos3x).dx

=1cos2x(sin2xsin x.cosx+cos2xsin x .cosx).dx

=sec2x(sin xcos x+cos xsin x).dx

=sec2x(tan x+cot x).dx

=sec2x(tan x+1tan x).dx

=(tan x+1tan x).sec2x.dx

Putting tan x=t

Differentiating w.r.t.x

sec2x=dtdx sec2x dx=dt

Thus,

=(tan x+1tan x).sec2x.dx

=(t+1t).dt

=t.dt+1t.dt

=t22+log|t|+C

Putting value of t=tan x

=tan2x2+log|tan x|+C

Where C is constant of integration.


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon