wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the limits of x2a+x2ax24a2, when x=2a.

Open in App
Solution

To find the limits of x2a+x2ax24a2 when x=2a
When we apply x=2a, we get 00 form
So, let's simplify this

limx2ax+x2a2ax24a2

=limx2ax+x2a2ax24a2×(x+x2a+2a)(x+x2a+2a)

=limx2a(x+x2a)2(2a)2)x24a2×1(x+x2a+2a)

=limx2ax+(x2a)+2x(x2a)2ax24a2×1x+x2a+2a
=limx2a2x4a+2x(x2a)x24a2×1x+x2a+2a
=limx2a2(x2a)+2x(x2a)(x2a)(x+2a)×1x+x2a+2a

=limx2a2(x2a)[x2a+x](x2a)(x+2a)×1x+x2a+2a

=limx2a2[x2a+x](x+2a)×1x+x2a+2a
=2[2a2a+2a](2a+2a)×12a+2a2a+2a

=2[2a]4a×122a
=12a

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Factorisation and Rationalisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon