wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the maximum and minimum values of each of the following trigonometrical expressions:
(i) 12 sin x − 5 cos x
(ii) 12 cos x + 5 sin x + 4
(iii) 5 cos x+3 sin π6-x+4
(iv) sin x − cos x + 1

Open in App
Solution

(i)
Let fx =12 sin x - 5 cosxWe know that-122+(-5)212 sin x - 5 cosx122+(-5)2-144+2512 sin x - 5 cosx144+25-1312 sinx - 5 cosx13Hence the maximum and minumun values of fx are 13 and -13, respectively .

(ii)
Let f(x)=12 cosx +5 sinx +4We know that-122+5212 cosx +5 sinx 122+52 for all x-16912 cosx +5 sinx 169-1312 cosx +5 sinx 13-912 cosx +5 sinx +417Hence, the maximum and minimum vaues of fx are 17 and -9, respectively.

(iii)
Let fx=5 cosx +3 sinπ6-x +4Now fx = 5cosx+3sin30°cosx -cos30°sinx+4 =5cosx +32cosx -332sinx +4 =132cosx-332sinx +4We know that-1322+-3322132cosx-332sinx1322+-3322 for all xTherefore,-169+274 132cosx-332sinx 169+274-142+4132cosx-332sinx +4142+4-3132cosx-332sinx +411Hence, maximum and minimun values of fx are 11 and -3, respectively .

(iv)
Let fx =sinx-cosx+1We know that-12+(-1)2sinx-cosx12+(-1)2 for all x-2sinx-cosx2-2+1sinx-cosx +12+1Hence maximum and minimum values of f(x) are 1+2 and 1-2 , respectively .

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon