Byju's Answer
Standard XII
Mathematics
Definition of Functions
Find the rang...
Question
Find the range of
f
(
x
)
=
sin
−
1
(
ln
[
x
]
)
+
ln
(
sin
−
1
[
x
]
)
,
where
[
x
]
is the greatest function.
Open in App
Solution
sin
−
1
(
ln
[
x
]
)
is defined if only if
−
1
≤
ln
[
x
]
≤
1
⇒
e
−
1
≤
[
x
]
≤
e
1
⇒
[
x
]
=
1
,
2
ln
(
sin
−
1
[
x
]
)
is defined if only if
sin
−
1
[
x
]
>
0
and
−
1
≤
[
x
]
≤
1
⇒
[
x
]
=
1
f
(
x
)
is defined if
[
x
]
=
1
only,
Range of
f
(
x
)
=
sin
−
1
(
ln
[
1
]
)
+
ln
(
sin
−
1
[
1
]
)
=
sin
−
1
(
ln
1
)
+
ln
(
sin
−
1
1
)
=
sin
−
1
(
0
)
+
ln
(
π
2
)
=
ln
(
π
2
)
Hence range is
{
ln
(
π
2
)
}
Suggest Corrections
0
Similar questions
Q.
If
f
(
x
)
=
sin
−
1
(
ln
[
x
]
)
+
ln
(
sin
−
1
[
x
]
)
(where
[
.
]
denotes the greatest integer function), then
Q.
Let
f
(
x
)
=
x
2
−
1
and
g
(
x
)
=
{
[
|
f
(
|
x
|
)
|
]
+
|
[
f
(
x
)
]
|
,
x
∈
(
−
1
,
0
)
∪
(
0
,
1
)
1
o
t
h
e
r
w
i
s
e
.
Then find the range of
ln
(
[
|
g
(
x
)
|
]
)
,
where
[
.
]
denotes the greatest integer function
Q.
Find the domain and range of
f
(
x
)
=
sin
−
1
(
log
[
x
]
)
+
log
(
sin
−
1
[
x
]
)
,
where
[
⋅
]
denotes the greatest integer function
Q.
The range of the function
f
(
x
)
=
s
i
n
[
x
]
,
−
π
4
<
x
<
π
4
where [x] denotes the greatest integer
≥
x
, is ____.
Q.
The range of the function
f
(
x
)
=
ln
(
sin
−
1
(
x
2
+
x
)
)
is
View More
Related Videos
Definition of Function
MATHEMATICS
Watch in App
Explore more
Definition of Functions
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app