CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the real Solution of the equation
tan1x(x+1)+sin1x2+x+x=π2.

Open in App
Solution

We have tan1x(x+1)+sin1x2+x+x=π2......(i).
Let sin1x2+x+1=θ
sinθx2+x+11
tanθ=x2+x+1x2x [tanθ=sinθcosθ]
θ=tan1x2+x+1x2x
=sin1x2+x+1
On putting the value of θ in equ (i) we get
tan1x(x+1)+tan1x2+x+1x2x=π2
We know that, tan1x+tan1(x+y1xy),xy<1
tan1⎢ ⎢ ⎢ ⎢ ⎢ ⎢x(x+1)+x2+x+1x2x1x(x+1)x2+x+1x2x⎥ ⎥ ⎥ ⎥ ⎥ ⎥=π2

tan1⎢ ⎢ ⎢ ⎢ ⎢ ⎢x2+x+x2+x+11(x2+x)1x2+xx2+x+11(x2+x)⎥ ⎥ ⎥ ⎥ ⎥ ⎥=π2
x2+x+(x2+x+1)[1(x2+x+1)(x2+x)]=tanπ2=10
[1(x2+x+1)](x2+x)=0=(x2+x+1)=1 or x2+x=0
x2x1=1 or x(x+1)=0
x2+x+2=0 or x(x+1)=0
x=1±14×22
x=0 or x=1
For real solution, we have x=0,1.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon