CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the shortest distance between the following pairs of lines whose vector equations are:

(i) r=3i^+8j^+3k^+λ3i^-j^+k^ and r=-3i^-7j^+6k^+μ-3i^+2j^+4k^

(ii) r=3i^+5j^+7k^+λi^-2j^+7k^ and r=-i^-j^-k^+μ7i^-6j^+k^

(iii) r=i^+2j^+3k^+λ2i^+3j^+4k^ and r=2i^+4j^+5k^+μ3i^+4j^+5k^

(iv) r=1-t i^+t-2 j^+3-t k^ and r=s+1 i^+2s-1 j^-2s+1 k^

(v) r=λ-1 i^+λ+1 j^-1+λ k^ and r=1-μ i^+2μ-1 j^+μ+2 k^

(vi) r=2i^-j^-k^+λ2i^-5j^+2k^ and, r=i^+2j^+k^+μi^-j^+k^

(vii) r=i^+j^+λ2i^-j^+k^ and, r=2i^+j^-k^+μ3i^-5j^+2k^

(viii) r=8+3λi^-9+16λj^+10+7λk^ and r=15i^+29j^+5k^+μ3i^+8j^-5k^ [NCERT EXEMPLAR]

Open in App
Solution

(i) r=3i^+8j^+3k^+λ3i^-j^+k^ and r=-3i^-7j^+6k^+μ-3i^+2j^+4k^

Comparing the given equations with the equations r=a1+λb1 and r=a2+μb2, we get

a1=3i^+8j^+3k^a2=-3i^-7j^+6k^b1=3i^-j^+k^ b2=-3i^+2j^+4k^ a2- a1=-6i^-15j^+3k^and b1×b2=i^j^k^3-11-324 =-6i^-15j^+3k^ b1×b2=-62+-152+32 =36+225+9 =270a2- a1.b1×b2=-6i^-15j^+3k^.-6i^-15j^+3k^ =36+225+9 =270

The shortest distance between the lines r=a1+λb1 and r=a2+μb2 is given by

d=a2- a1.b1×b2 b1×b2 =270270 =270


(ii) r=3i^+5j^+7k^+λi^-2j^+7k^ and r=-i^-j^-k^+μ7i^-6j^+k^

Comparing the given equations with the equations r=a1+λb1 and r=a2+μb2, we get

a1=3i^+5j^+7k^a2=-i^-j^-k^b1=i^-2j^+7k^b2=7i^-6j^+k^ a2- a1=-4i^-6j^-8k^and b1×b2=i^j^k^1-277-61 =40i^+48j^+8k^ b1×b2=402+482+82 =1600+2304+64 =3968a2- a1.b1×b2=-4i^-6j^-8k^.40i^+48j^+8k^ =-160-288-64 =-512

The shortest distance between the lines r=a1+λb1 and r=a2+μb2 is given by

d=a2- a1.b1×b2 b1×b2 =-5123968 =5123968

(iii) r=i^+2j^+3k^+λ2i^+3j^+4k^ and r=2i^+4j^+5k^+μ3i^+4j^+5k^

Comparing the given equations with the equationsr=a1+λb1 and r=a2+μb2, we get

a1=i^+2j^+3k^a2=2i^+4j^+5k^b1=2i^+3j^+4k^ b2=3i^+4j^+5k^ a2- a1=i^+2j^+2k^and b1×b2=i^j^k^234345 =-i^+2j^-k^ b1×b2=-12+22+-12 =1+4+1 =6a2- a1.b1×b2=i^+2j^+2k^.-i^+2j^-k^ =-1+4-2 =1

The shortest distance between the lines r=a1+λb1 and r=a2+μb2 is given by

d=a2- a1.b1×b2 b1×b2 =16 =16

(iv) r=1-t i^+t-2 j^+3-t k^ and r=s+1 i^+2s-1 j^-2s+1 k^

The vector equations of the given lines can be re-written as

r=i^-2j^+3k^+t-i^+j^-k^ and r=i^-j^-k^+si^+2j^-2k^

Comparing the given equations with the equations r=a1+λb1 and r=a2+μb2, we get

a1=i^-2j^+3k^a2=i^-j^-k^b1=-i^+j^-k^ b2=i^+2j^-2k^ a2- a1=j^-4k^and b1×b2=i^j^k^-11-112-2 =-3j^-3k^ b1×b2=-32+-32 =9+9 =32a2- a1.b1×b2=j^-4k^.-3j^-3k^ =-3+12 =9

The shortest distance between the line r=a1+λb1 and r=a2+μb2 is given by
d=a2- a1.b1×b2 b1×b2 =932 =32

(v) r=λ-1 i^+λ+1 j^-1+λ k^ and r=1-μ i^+2μ-1 j^+μ+2 k^

The vector equations of the given lines can be re-written as

r=-i^+j^-k^+λi^+j^-k^ and r=i^-j^+2k^+μ-i^+2j^+k^
Comparing the given equations with the equations r=a1+λb1 and r=a2+μb2, we get

a1=-i^+j^-k^a2=i^-j^+2k^b1=i^+j^-k^b2=-i^+2j^+k^ a2- a1=2i^-2j^+3k^and b1×b2=i^j^k^11-1-121 =3i^+3k^ b1×b2=32+32 =9+9 =32a2- a1.b1×b2=2i^-2j^+3k^.3i^+3k^ =6+9 =15

The shortest distance between the lines r=a1+λb1 and r=a2+μb2 is given by

d=a2- a1.b1×b2 b1×b2 =1532 =52

(vi) r=2i^-j^-k^+λ2i^-5j^+2k^ and, r=i^+2j^+k^+μi^-j^+k^

Comparing the given equations with the equations r=a1+λb1 and r=a2+μb2, we get

a1=2i^-j^-k^a2=i^+2j^+k^b1=2i^-5j^+2k^ b2=i^-j^+k^ a2- a1=-i^+3j^+2k^and b1×b2=i^j^k^2-521-11 =-3i^+3k^ b1×b2=-32+32 =9+9 =32a2- a1.b1×b2=-i^+3j^+2k^.-3i^+3k^ =3+6 =9

The shortest distance between the lines r=a1+λb1 and r=a2+μb2 is given by

d=a2- a1.b1×b2 b1×b2 =932 =32

(vii) r=i^+j^+λ2i^-j^+k^ and, r=2i^+j^-k^+μ3i^-5j^+2k^

Comparing the given equations with the equationsr=a1+λb1 and r=a2+μb2, we get

a1=i^+j^a2=2i^+j^-k^b1=2i^-j^+k^b2=3i^-5j^+2k^ a2- a1=i^-k^and b1×b2=i^j^k^2-113-52 =3i^-j^-7k^ b1×b2=32+-12+-72 =9+1+49 =59a2- a1.b1×b2=i^-k^.3i^-j^-7k^ =3+7 =10

The shortest distance between the lines r=a1+λb1 and r=a2+μb2 is given by

d=a2- a1.b1×b2 b1×b2 =1059 =1059

(viii) The vector equations of the given lines can be re-written as

r=8i^-9j^+10k^+λ3i^-16j^+7k^ and r=15i^+29j^+5k^+μ3i^+8j^-5k^

Comparing the given equations with the equations r=a1+λb1 and r=a2+μb2, we get

a1=8i^-9j^+10k^

b1=3i^-16j^+7k^

a2=15i^+29j^+5k^

b2=3i^+8j^-5k^

a2-a1=15i^+29j^+5k^-8i^-9j^+10k^=7i^+38j^-5k^

b1×b2=i^j^k^3-16738-5=24i^+36j^+72k^b1×b2=242+362+722=576+1296+5184=7056=84

Also,

a2-a1.b1×b2=7i^+38j^-5k^.24i^+36j^+72k^=7×24+38×36+-5×72=168+1368-360=1176

We know that the shortest distance between the lines r=a1+λb1 and r=a2+μb2 is given by d=a2- a1.b1×b2 b1×b2.

∴ Required shortest distance between the given pairs of lines,

d=a2- a1.b1×b2 b1×b2 =117684 =14

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Vector Triple Product
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon