CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

Find the square of: $$3a - 4b$$.


A
a2+4ab+b2
loader
B
9a224ab+16b2
loader
C
9a2ab+16b2
loader
D
9a2+24ab+b2
loader

Solution

The correct option is B $$9a^{2}\, -\, 24ab\, +\,16b^{2}$$
Given, $$(3a-4b)$$.

On squaring, we get, $$(3a-4b)^2$$.

We know,  $$(x+y)^2=x^2+y^2+2xy$$.

Then,
$$(3a-4b)^2$$
$$=(3a)^2-2(3a)(4b)+(4b)^2$$
$$=9a^2-24ab+16b^2$$.

Therefore, option $$B$$ is correct.

Mathematics

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image