Find the total possible integral solution for n1n2=2n1−n2,where n1,n2ϵ integer.
Open in App
Solution
n1n2=2n1−n2 ⇒n2(n1+1)=2n1⇒n2=2n1n1+1 or n2=2−2n1+1; Since, n1,n2 is an integer. ∴2n1+1∈integer or n1+1=−2,−1,1,2 or n1=−3,−2,0,1⇒n2=3,4,0,1 ⇒ Integral solutions of the form (n1,n2) are (−3,3),(−2,4),(0,0),(1,1).