wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of cosπ11+cos3π11+cos5π11+cos7π11+cos9π11.

Open in App
Solution

S=cosπ11+cos3π11+cos5π11+cos7π11+cos9π11
Multiply both sides by 2sinπ/11
2sinπ11s=2sinπ11cosπ11+2sinπ11cos3π11+2sinπ11cos5π11+2sinπ11cos7π11+2sinπ11cos9π11
[we know 2sinAcosB=sin(A+B)+sin(AB)]
2sinπ11s=sin2π11+sin4π11sin2π11+sin6π11sin4π11+sin8π11sin6π11+sin10π11sin8π11
2sinπ11s=sin10π11
S=sin10π112sinπ11=sin(ππ11)2sinπ/11
=12sinπ/11sinπ/11=12.

1055449_1061303_ans_919ed6b5c2da4cf988680e56c985a960.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon