Find the value of log7log7 √7(√7√7) , if log10 7 = 0.8450 and log10 2 = 0.3010
0.0685
log7log7 √7(√7√7)
= log7log7 √7.√7.√712 = log7log7 √774
= log7log7 778
= log7(78).log77
= log77−log78 = 1 - log723 = 1 - 3log72
= 1 - 3log102log107 = 1 - 3 × 0.30100.8450 = 1 - 3 × 0.3561
= 0.0685.