CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

Find the volume of the rectangular solids whose dimensions are as follows:
(a) Length = 15 m, Breadth = 12 m and Thickness = 75 cm
(b) Length = $$12\frac{1}{2}$$ m, Breadth = 5.2 m and Thickness = 80 cm


Solution

Given are two sets of dimensions of a rectangular solid.
To find out: Volume of the solid.

$$(a)$$ Given dimensions are: $$l=15\ m,\ b=12\ m$$ and thickness $$=75\ cm$$.
Hence, volume of the solid $$=l\times b\times \text{thickness}$$
$$=15\times 12\times 0.75\quad \quad [75\ cm=0.75\ m]$$
$$=180\times 0.75$$
$$=135 \ m^3$$
$$\therefore \ $$ Volume of the solid $$=135 \ m^{3}$$

$$(b)$$ Given dimensions are: $$l=12\frac12=\frac{25}{2}\ m,\ b=5.2\ m$$ and thickness $$=80\ cm=0.80\ m$$.
Hence, volume of solids$$ =l\times b\times \text{thickness}$$
$$=\dfrac{25}{2}\times 5.2\times 0.80\\$$
$$=12.5\times 4.16\\$$
$$= 52\ m^3\\$$
$$\therefore \ $$ Volume of the solid $$=52 \ m^{3}$$.

Mathematics

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image